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Abstract

Visualization Verification of Complex Avionic Models Using Com-
puter Vision
With the growing complexity of applications in aviation, the use of Domain-specific Modeling
(DSM) in the field has become vital. It enables engineers to work on larger and more complex
applications more efficiently and, through automatic code generation, significantly reduces the
number of errors in the resulting programs. For use in safety-critical applications however, DSM
requires significant verification effort. One important aspect of DSM in these applications is
ensuring a correct model visualization to increase safety and reduce the amount of manual
verification work.
This thesis aims to improve the reliability of the automated verification of block-diagram
visualizations in DSM. Computer vision techniques are used to recognize and process block
diagram models. The recognized data is compared with the original model to find and indicate
deviations to the user inside a browser-based graphical model editor.
This thesis extends the capabilities of the block diagram recognition algorithm to work with
complex and diverse diagrams in three graphical Domain-specific Languages (DSLs). The
new implementation is able to correctly identify and process intersecting or partially obscured
lines in any orientation, detect a larger variety of vertices, and process text labels in multiple
orientations, showcasing its potential to significantly reduce manual verification effort in DSM
applications.
The new implementation is evaluated using a set of 20 unique test cases, each containing one or
two block diagrams with a single simulated error. The results show that the implementation is
able to correctly identify and textually indicate all simulated errors to the user, differentiating
between different error types. If possible, the implementation visually provides the position of
the found errors inside the model editor alongside the textual indication.
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Kurzzusammenfassung

Verifikation von Visualisierungen von komplexen Avionik Modellen
mit Computer Vision
Mit der steigenden Komplexität von Anwendungen in der Luftfahrt wird die Nutzung von
Domain-specific Modeling (DSM) in diesem Bereich immer wichtiger. Es ermöglicht Ingenieuren,
effizienter an größeren und komplexeren Anwendungen zu arbeiten und reduziert durch au-
tomatische Code-Generierung die Anzahl der Fehler in den resultierenden Programmen. Bei
sicherheitskritischen Anwendungen jedoch ist DSM durch die nötige Verifikation der Modell-
Visualisierungen mit signifikantem Mehraufwand verbunden.
Diese Arbeit zielt darauf ab, die Zuverlässigkeit der automatisierten Verifikation von
Blockdiagramm-Visualisierungen in DSM zu verbessern. Techniken der Computer-Vision wer-
den verwendet, um Blockdiagramm-Modelle zu erkennen und zu verarbeiten. Die erkannten
Daten werden mit dem ursprünglichen Modell verglichen, um Abweichungen zu finden und dem
Benutzer innerhalb eines browserbasierten grafischen Modelleditors anzuzeigen.
Diese Arbeit erweitert die bestehende Implementierung der Blockdiagramm-Erkennung, um mit
komplexen und vielfältigen Diagrammen in drei grafischen Domain-specific Languages (DSLs)
zu arbeiten. Die neue Implementierung verwendet eine Kombination von Methoden aus der
Computer-Vision, um Kreuzende oder teilweise verdeckte Verbindungslinien in verschiedenen
Ausrichtungen, diverse Vertices in unterschiedlichen Größen und Anordnungen sowie Textblöcke
in unterschiedlichen Orientierungen zu erkennen.
Diese Verbesserungen demonstrieren das Potenzial von Computer-Vision-Methoden, die Ver-
ifikation von DSM-Modellen zu automatisieren und die Sicherheit in sicherheitskritischen
Anwendungen der Luftfahrt zu erhöhen.
Die neue Implementierung wird anhand einer Reihe von 20 Testfällen evaluiert, die jeweils ein
oder zwei Blockdiagramme mit einem simulierten Fehler enthalten. Die Ergebnisse zeigen, dass
die Implementierung in der Lage ist, alle simulierten Fehler korrekt zu identifizieren und textuell
anzuzeigen, wobei zwischen verschiedenen Fehlertypen unterschieden wird. Wenn möglich, gibt
die Implementierung zusätzlich zu der textuellen Anzeige auch die Position der gefundenen
Fehler im Modelleditor visuell aus.

IX



X



Contents

Contents XI

List of Figures XIII

List of Tables XV

Index of abbreviations XVII

1 Introduction 1

2 Fundamentals 3
2.1 eXtensible Graphical EMOF Editor (XGEE) . . . . . . . . . . . . . . . . . . 3

2.1.1 Functions editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Hardware editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.3 Allocations editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Computer Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Domain-specific Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Challenges in XGEE’s visualization verification . . . . . . . . . . . . . . . . . 6
2.5 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Advanced Block Diagram Recognition 9
3.1 Edge Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1 Kernel-based Edge Detection . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.2 Intersection Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.3 Container Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.4 Line Segment Grouping and Sorting . . . . . . . . . . . . . . . . . . . 13

3.2 Vertex Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Text Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Integration 23
4.1 System Overview and Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Edge Detection Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 Vertex Detection Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4 Text Recognition Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.5 Testing and Validation of the Integration . . . . . . . . . . . . . . . . . . . . 25

5 Results 27
5.1 Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6 Discussion 33
6.1 Discussion of Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.2 Limitations of the Current Implementation . . . . . . . . . . . . . . . . . . . 33

7 Outlook 35
7.1 Edge Detection Further Improvements . . . . . . . . . . . . . . . . . . . . . . 35
7.2 Vertex Detection Further Improvements . . . . . . . . . . . . . . . . . . . . . 36
7.3 Text Detection Further Improvements . . . . . . . . . . . . . . . . . . . . . . 37
7.4 Expanding to other Domains or Applications . . . . . . . . . . . . . . . . . . 38

Bibliography 41

XI



XII



List of Figures

2.1 Example of a diagram in the Functions editor . . . . . . . . . . . . . . . . . . 3
2.2 Example of a diagram in the Hardware editor . . . . . . . . . . . . . . . . . . 4
2.3 Example of a diagram in the Allocations editor . . . . . . . . . . . . . . . . . 4
2.4 Steps in the visualization verification process . . . . . . . . . . . . . . . . . . 5
2.5 Example of an UML class diagram . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1 Kernel used for vertical edge detection . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Filter2D function results for the horizontal and vertical kernel . . . . . . . . . 10
3.3 Filter2D function results for the horizontal and vertical kernel thresholded . . 10
3.4 Detected pixels / line segments before and after filtering . . . . . . . . . . . . 10
3.5 Similarity score peak at an intersection . . . . . . . . . . . . . . . . . . . . . . 11
3.6 Intersection detection template . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.7 Aliasing example found near hard edges . . . . . . . . . . . . . . . . . . . . . 12
3.8 Signal container detection template . . . . . . . . . . . . . . . . . . . . . . . . 12
3.9 Intersection before and after connecting line segments . . . . . . . . . . . . . 12
3.10 Line segments being grouped into line segment chains . . . . . . . . . . . . . 14
3.11 Intermediate points / Endpoints difference . . . . . . . . . . . . . . . . . . . . 14
3.12 Numbered polylines found in the functions editor . . . . . . . . . . . . . . . . 15
3.13 Automatic subvertex removal example . . . . . . . . . . . . . . . . . . . . . . 17
3.14 Template matching template generation . . . . . . . . . . . . . . . . . . . . . 17
3.15 Extraction of foreground pixels . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.16 Complete detection of very large devices . . . . . . . . . . . . . . . . . . . . . 18
3.17 Text detection of rotated text before . . . . . . . . . . . . . . . . . . . . . . . 19
3.18 Text detection of rotated text after . . . . . . . . . . . . . . . . . . . . . . . . 19
3.19 Debugging image of bounding boxes and token names . . . . . . . . . . . . . 20

4.1 Inheritance diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.1 Unaltered models as a basis for testcase generation . . . . . . . . . . . . . . . 27

6.1 Example of the thin edges in the allocations editor . . . . . . . . . . . . . . . 34

7.1 Example of intersection and edge types . . . . . . . . . . . . . . . . . . . . . . 35
7.2 Overlapping edges, vertices and labels . . . . . . . . . . . . . . . . . . . . . . 36
7.3 Example of a model with many tasks . . . . . . . . . . . . . . . . . . . . . . . 38

XIII



XIV



List of Tables

5.1 Results for test cases with textual and visual error indication. . . . . . . . . . 29
5.2 Results for test cases with textual error indication. . . . . . . . . . . . . . . . 31
5.3 Functional Test Cases Demonstrating Correct System Behavior . . . . . . . . 32

XV



XVI



Index of abbreviations
API Application Programming Interface

CNN Convolutional Neural Network
CPU Central Processing Unit

DSL Domain-specific Language
DSM Domain-specific Modeling

EAST Efficient and Accurate Scene Text Detector
EMF Eclipse Modeling Framework
EMOF Essential Meta-object Facility

GPU Graphics Processing Unit

IO Input-output

OAAM Open Avionics Architecture Model
OCR Optical Character Recognition
OOP Object-oriented Programming
OpenCV Open Source Computer Vision Library

R-CNN Region-based Convolutional Neural Network

SLD Single-line Diagrams

UI User Interface
UML Unified Modeling Language

XGEE eXtensible Graphical EMOF Editor

XVII



XVIII



1 Introduction

Development of complex, safety-critical systems requires an efficient way for engineers to ensure
the correctness and reliability of the developed software. Domain-specific Modeling (DSM)
provides an approach to achieve this by enabling the creation of models that are closely aligned
with the specific concepts and requirements of a particular domain. This approach usually
includes automatic code generation, which significantly reduces the risk of faulty applications
[1].
By using DSM, engineers can work more effectively, as it allows for the abstraction of complex
system details into more manageable and understandable representations. This not only enhances
productivity but also the overall quality and safety of the developed systems.
Models can be represented visually using block-diagrams to further simplify the development
process. Furthermore, DSM enables the reuse of domain-specific knowledge and components.
In safety-critical domains, such as avionics, the ability to visualize models and automatically
generate code from them ensures that the software adheres to safety standards and reduces the
likelihood of human errors during the development process.

However, DSM can only be used without subsequent manual verification, if the DSM tools work
correctly. This can either be achieved through time intensive qualified software development
processes, which ensure an accurate and reliable visualization of DSM through the tool itself, or
through the use of unverified DSM tools followed by the subsequent use of a small visualization
verification tool to ensure the correctness of the application.
In low-cost projects with high safety requirements, a cost-effective qualification method is crucial,
highlighting the potential of the latter approach for a qualifiable graphical verification tool for
use in DSM [2].

A typical use case for DSM in avionics could be a door opening system. The system consists of
a door, a motor, a sensor and a control unit. The door can be opened and closed by the motor,
which is controlled by the control unit. The sensor detects whether the door is open or closed.
The control unit receives the sensor data and controls the motor accordingly.
This system can be modeled using a block diagram, where the door, motor, sensors and
control unit are represented as blocks, and the connections between them are represented as
lines. Another diagram can be used to model the airplanes hardware components and their
connections, such as the core processing units, remote data concentrators, sensors and actuators.
A third diagram can be used to allocate the functions to the hardware components, as well as
the connections between them.
This diagram-based approach allows users to visualize the system and its components, making
it easier to understand and communicate. Diagram-based model editors include well established
tools such as Simulink and Enterprise Architect, which are widely used in the industry.
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2 Fundamentals

The following chapter provides an overview of the fundamentals of the technologies and concepts
used in this thesis. It covers the eXtensible Graphical EMOF Editor (XGEE), computer vision,
Domain-specific Modeling (DSM), the challenges in XGEE’s visualization verification and the
state of the art in automatic diagram interpretation.

2.1 eXtensible Graphical EMOF Editor (XGEE)

XGEE is a graphical model editor, which is currently under development at the Institute of
Aircraft Systems. This editor is designed to facilitate the creation and modification of ecore-
based models through a browser-based graphical user interface. Generally, XGEE can be used
to work with any kind of model, but this thesis focuses on its use in aviation.
The primary objective of XGEE is to provide a user-friendly platform that allows engineers to
efficiently design and visualize complex avionic systems, possibly working simultaneously on the
same model. A demonstrator of XGEE is currently available online.1
Within XGEE, three distinct types of tokens are utilized across three specialized editors to
represent various components of avionic models. These editors are:

• signals

• vertices

• text labels

We consider XGEE editors for three layers of the Open Avionics Architecture Model (OAAM):
the functions editor, the hardware editor and the allocations editor. OAAM supports additional
layers such as the restrictions layer and capabilities layer, which are not considered in this thesis.
In XGEE, each of the three editor models utilizes a unique set of .svg files to represent different
components within the avionic model. These editor models are the functions editor, the hardware
editor, and the allocations editor. An overview of these editors is provided in the following
sections.

2.1.1 Functions editor

Figure 2.1: Example of a diagram in the Functions editor.

The functions editor is used to define avionic functions and their interactions. Functions are
represented as large blue boxes, with their interactions shown through black signals connecting
inputs and outputs. Inputs and outputs are depicted as small black-and-white triangles located
on the left and right edges of the function boxes. Inputs, outputs and functions have visible
text labels (see Figure 2.1).

1https://xgee.de/en/
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2 Fundamentals

2.1.2 Hardware editor

Figure 2.2: Example of a diagram in the Hardware editor.

The hardware editor is used to define hardware components and their physical connections.
Hardware components are represented as large gray boxes, and their connections are illustrated
as black signals linking Input-output (IO) ports. These IO ports appear as small black squares
positioned along any edge of the hardware boxes. Like in the functions editor, IOs and devices
have visible text labels (see Figure 2.2).

2.1.3 Allocations editor

Figure 2.3: Example of a diagram in the Allocations editor.

The allocations editor is used to map functions to hardware components. Visually, it is simmilar
to the hardware editor, with allocated functions represented as small blue boxes nested within
larger gray hardware boxes. The specific signal transmissions between the hardware components
are illustrated as white signal containers that overlap with the corresponding physical connections.
These boxes contain the signals being transmitted through the corresponding connection. Inside
the gray hardware boxes, connections between functions and IO’s, are illustrated as thin, color-
coded signals. They represent the same connections proviously defined in the functions editor,
but are now allocated to specific hardware components (see Figure 2.3).

This thesis builds upon the work of Andreas Waldvogel and Björn Annighöfer in [2] to further
automate the verification process within XGEE by tokenizing a screenshot of the editor window.
This means detecting the bounding boxes and token types of all elements of the diagram. To
recognize and process the screenshot data, methods from the Python library OpenCV are being
used.
The complete process of converting a screenshot of a block-diagram into meaningful error
indications requires a series of individual steps, as shown in Figure 2.4.
By rebuilding a model from the recognized tokens and comparing it to the original, visualization
errors become apparent and can be indicated to the user, including issues such as unclear signal
intersections, signals being obscured by blocks, text labels being obscured by signals or blocks,
blocks being scaled down to the point of disappearing, or blocks obscuring other blocks.
Fundamentally, this verification approach can be applied to any model-based application like
Simulink. However, implementing the model comparison step would require much work, as the
model has to be reconstructed from the recognized tokens, which is not trivial.
The goal of this thesis is to provide a tool that can be used to verify the correctness of the
visualization of avionic models within XGEE’s functions and hardware editors, enabling engineers
to work more effectively and with a higher degree of confidence.
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2.2 Computer Vision

Figure 2.4: Steps in the visualization verification process [2].

2.2 Computer Vision

Humans have the remarkable ability to efficiently perceive and interpret visual information,
extracting meaningful insights from their surroundings with ease. Tasks such as recognizing
familiar faces, estimating distances, or identifying irregularities in a road surface may appear
trivial to us, yet they present a significant challenge for computers to replicate.
Computer Vision is the field of mathematical models and approaches that enable computers
to recover, interpret, and understand information from images or videos like humans. It
encompasses a wide range of tasks, including image recognition, object detection, automation
and more. It has numerous applications in a variety of fields, such as autonomous vehicles, facial
recognition and medical imaging. Eventhough the field has made significant progress in recent
years, many challenges such as handeling complex environments in real-time, detecting objects
in low-light conditions or interpreting ambiguous data remain unsolved.
In avionic model development, visual representations of models are used to communicate complex
systems and their interactions. To ensure correctness of these models, computer vision tools are
used to interpret and verify the visual model representations, eliminating the need for manual
verification.

2.3 Domain-specific Modeling

When developing safety-critical real-world applications, such as an avionics system, Object-
oriented Programming (OOP) enables developers to create complex systems by defining classes
and objects that interact with each other. However, as the complexity of these systems increases,
it becomes harder for many developers to collaborate on the same project, as they need to
understand the entire system to make changes.

The Unified Modeling Language (UML) is a generic and source-code-independent OOP
description language that can be used to model software systems. It provides a standardized
way to visualize the design of a system using UML diagrams, making it easier to understand
and communicate. These diagrams consist of clearly defined elements specified in the UML
standard and can be directly converted to code through automatic code generation.

5



2 Fundamentals

Figure 2.5: Example of an UML class diagram describing a library management system. In
highly specialized domains, such as avionics, an UML diagram might be too abstract to clearly
represent the system. [3]

Figure 2.5 shows an example UML class diagram describing a library management system.
While UML provides a standardized approach for modeling software systems in a general-
purpose manner, it may not fully address the specific needs of highly specialized domains, such
as avionics. Domain-Specific Modeling (DSM) addresses this issue by enabling engineers to
create models that are closely aligned with the concepts and requirements of a particular domain.
For example, in avionics systems, DSM might use specialized notation to represent specific
aircraft components, such as sensors, actuators, or flight control systems, rather than relying on
abstract classes and objects like UML. This reduces the semantic gap between the model and
the real-world implementation.
In most cases, a Domain-specific Language (DSL) is developed by a small group of experts
within a company or within a collaboration between companies and tailored to their unique
needs, then used consistently throughout the organization to ensure uniformity and efficiency.
This approach simplifies design processes and ensures that models are more easily validated,
improving both reliability and safety, both critical requirements in the development of avionics
systems.

2.4 Challenges in XGEE’s visualization verification

The XGEE editor is a browser-based model editor that, in our application, allows users to create
and edit avionic models using a graphical interface but in general, XGEE can be used to edit
anything that uses an ecore metamodel. For this thesis, we conside three editor models: the
functions editor, the hardware editor and the allocations editor, each useing a different set of
tokens to represent different elements of the model.
To verify the correctness of this visualization, a screenshot of the model is tokenized, meaning
that the bounding boxes and token types of all elements of the diagram are detected. The
recognized tokens are checked for correct syntax and unrecognized pixels. Then they are used
to rebuild the model and compare it to the original, highlighting any visualization errors.
The primary challenge addressed in this paper is the accurate detection of these tokens. This
includes handling intersecting and overlapping signals, obscured vertices and text labels, as well

6
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as large and complex models.
Furthermore, the integration of new methods for token detection into the existing codebase
introduces an additional layer of complexity. Another challenge adressed in this thesis is to
make the verification more versatile by enabeling it to change with the model. This is achieved
by making the verification model-driven, allowing the methods to query the current model for
information and dynamically change their behavior based on it.

2.5 State of the Art

Automatic diagram interpretation has been a topic of interest in the field of computer vision
and DSM. It could enable engineers to utilize diagrams that are currently only available as
images or drawings, which would otherwise require manual reverse engineering. However, in
large projects with consistent and well-maintained databases, most diagrams are already stored
in usable formats, reducing the practical demand for automatic diagram interpretation in the
industry. Consequently, no commercial tools for verified block diagram recognition are currently
available on the market.

The work most similar to this thesis is presented in [4], which utilized a specifically trained
Convolutional Neural Network to classify common symbols used in Piping and Instrumentation
Diagrams, achieving an accuracy of 90%. They detected connecting lines using a graph search
approach. By representing the pixels within the diagram image as a graph of black and white
nodes, connecting lines can be identified by starting at any node corresponding to a symbol and
traversing the diagram graph along its black nodes, keeping track of connected symbols along
its path. For text detection, they used EAST, a text detectrion pipeline using a neural network.
However, their method did not address the indication of uncertainties to the user. Instead, their
primary goal was to digitize a database of diagrams to enable applications such as diagram
search and machine learning-based predictive maintenance in the industry.
Recent research has focused on the recognition of handwritten diagrams, mathematical equations,
flowcharts, and circuit diagrams. For example, [5] proposed a method for normalizing images
captured by hand at arbitraty orientations to improve recognition accuracy and reliablity.
[6] used Arrow R-CNN, a deep-learning model and an extension of the Region-based Convolutional
Neural Network (R-CNN) object detector [7] to detect and classify offline handwritten diagrams.
R-CNN is an object detection framework to identify bounding boxes around objects and classify
each object into its respective category. On a scanned flowchart dataset, the model achieved an
accuracy of 78.6%, substantially improving the previous state of the art. However, their method
was not designed recognize the diagrams structure or to adress the specific challenges of avionic
model diagrams, particularly the need for validation and user feedback mechanisms.
Building on this work, [8] proposed DrawnNet, a CNN and keypoint-based detector capable of
recognizing both symbols and diagram structures. Among other techniques, DrawnNet leverages
arrow direction predictions to enhance diagram interpretation.
[9] proposed a framework for Single-line Diagrams (SLD) recognition, which are used in electrical
engineering to represent power systems. Their methods include decomposing the diagram into
seperate layers of electrical symbols and text labels to mitigate interference, using R-CNN to
identify graphical symbols and the super-resolution technique to improve text label recognition.

The approaches discussed above face challenges due to the inherent ambiguity of loosely defined
graphical modeling languages and non-ideal photos of diagrams. A significant amount of effort
is typically spent on recognizing various styles, but they often prioritize maximizing detection
without considering the level of confidence in the results. In contrast, our approach takes a
different direction. By leveraging the precise definition of a graphical Domain-specific Language
(DSL), we focus on a more structured verification process. Rather than attempting to recognize
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2 Fundamentals

all elements, our goal is to highlight areas where uncertainty exists in the visualization, providing
more meaningful and targeted feedback. The methods proposed in this thesis are based on the
work of [2], which introduced a method for tokenizing and validating a screenshot of an avionic
model within the XGEE editor. The aim of this thesis is to extend this work by improving the
accuracy of token detection and integrating new methods for more complex detection tasks.

8



3 Advanced Block Diagram Recognition

Accurately interpreting complex diagrams is essential for many analytical and computational
tasks. In the context of XGEE, this involves breaking down screenshots into meaningful
components through tokenization. This process, however, depends on the robustness and
reliability of the underlying algorithms. This chapter aims to build upon the original algorithms,
improving upon their detection accuracy, versatility and ensuring stability.

3.1 Edge Detection

Edges represent connections between vertices, inputs and outputs. Detecting edges accurately
requires an approach that can identify individual line segments and how they connect to form
complex chains. This section introduces a robust edge detection pipeline leveraging multiple
computer vision techniques to reliably identify edges across a wide variety of block diagrams
within XGEE.

3.1.1 Kernel-based Edge Detection

Figure 3.1: kernel used for vertical edge
detection, rotated by 90° to generate
the horizontal kernel.

Since there are only vertical and horizontal edges within
XGEE, two different kernels are used to find all pixels
containing part of a vertical or horizontal edge. The
filter2D() function places the kernel anchor (usually
the top left value of the kernel) on top of a pixel, with
the rest of the kernel overlapping the corresponding
local pixels. The kernel values are then multiplied by
the corresponding pixel values underneath and added
together. The result is saved and placed on the location
of the anchor. The vertical kernel in Figure 3.1 is rotated
by 90◦ to generate the horizontal kernel.
The same process can be expressed using Equation 3.1,
where H is the resulting matrix, I is the original image
and K is the used kernel, with x, y, i and j representing
individual pixels within the image and the kernel. This
process is repeated for every pixel and, depending on
the structure of the kernel, it can also be used to blur or sharpen an image [10].
Currently, only a single line width defined by the kernel size is supported, which is enough for
the functions and hardware editor. The allocations editor, however, will require support for
multiple line widths and low contrast lines.
Each value in the processed image is normalized to an 8-bit integer between 0 and 255. This
allows the data to be visualized as a gray scale image and processed further using OpenCV’s
thresholding() function to extract the detected pixels (see Figure 3.2 and 3.3).
As illustrated in Figure 3.4, ports and letters are sometimes misidentified as edges. Additionally,
intersections of edges as well as points where horizontal and vertical edges meet are not
immediately detected. These challenging areas will be processed individually in a later step in
the edge detection pipeline. Apart from these specific cases, the method effectively extracts all
pixels corresponding to vertical and horizontal edges, provided their widths match those of the
used kernels.

H(x, y) =
Mi−1∑
i=0

Mj−1∑
j=0

I(x + i − ai, y + j − aj) · K(i, j) (3.1)
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3 Advanced Block Diagram Recognition

Figure 3.2: Filter2D function results for the horizontal (left) and vertical (right) kernel before
thresholding. Edge-like pixels are colored more yellow, while non-edge-like pixels are colored
more purple.

Figure 3.3: Thresholded filter2D function results. Edge-like pixels are now isolated.

For easier subsequent processing and data storage, the thresholded pixels seen in Figure 3.3 are
converted to line segments consisting of start- and endpoints. This is achieved through two of
OpenCV’s built-in functions:
findContours(), which retrieves contours from a binary image using an algorithm introduced
by Satoshi Suzuki and others in [11]. In this context, it is used to group nearby pixels and
represent them as narrow polygons.
approxPolyDP(), which approximates a curve or a polygon with another curve or polygon with
less vertices using an algorithm introduced by David H Douglas and Thomas K Peucker in their
paper: [12]. This function is used to simplify the contours found by findContours() into line
segments.

Figure 3.4: Comparison of detected pixels and line segments around an output before and after
filtering short segments.

Misidentified letters and ports are removed by filtering out all line segments with a length
shorter than 20 pixels. In all test cases, this approach successfully removes the unwanted line
segments while keeping the edges, illustrated in Figure 3.4.
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3.1 Edge Detection

Figure 3.5: Similarity score peak at an intersection visualized in 3d using plotly. X and Y axes
show the screenshot in grayscale, while the Z axis represents the similarity score.

3.1.2 Intersection Detection

Figure 3.6: Template image used for
intersection detection.

As shown in Figure 3.3, the filter2D() function initially
does not detect any edges at intersections, leading to
gaps between the line segments. To process these gaps,
it is assumed that intersections always consist of two
straight edges. Overlapping 90° turns are considered
impossible and will result in an error caused by the
incorrect edge recognition, as it would result in an am-
biguous diagram.
First, all intersections in the image are detected using
OpenCV’s matchTemplate() function, which matches a
template image of an intersection, as seen in Figure 3.6,
to overlapping regions of the target image [13].
The function slides the template across the image, com-
paring overlapping patches with the template using a
specified method. Among the available methods [14],
Sum of square differences normed (tm_sqdiff_normed)
produced the most accurate results. For each pixel,
according to Equation 3.2, the function calculates and
assigns a value R(x, y) representing the similarity between the template T (x′, y′) and the cor-
responding image region I(x + x′, y + y′) below. While this approach is more precise than
filter2D(), it is also significantly more resource-intensive.

R(x, y) =
∑

x′,y′(T (x′, y′) − I(x + x′, y + y′))2√∑
x′,y′ T (x′, y′)2 ·

∑
x′,y′ I(x + x′, y + y′)2

(3.2)

At intersections, the similarity value is approximately 85%. This slight discrepancy likely arises
from how modern operating systems use aliasing to render text and lines with higher apparent
resolution and contrast compared to the display. Zooming in (see Figure 3.7) reveals that the
white pixels near edges and text are often replaced with subtle color hues or shades of gray.
Rendering the results of the template matching highlights a peak in similarity at the intersection
(Figure 3.5). Thresholding isolates this peak, typically yielding two or more matches per
intersection. These matches are then filtered based on proximity, ensuring only one match is
detected at each intersection.
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3 Advanced Block Diagram Recognition

The method then processes each detected intersection by connecting the two vertical and two
horizontal line segments adjacent to it. This eliminates any residual points near the intersection,
leaving only one vertical and one horizontal line segment, as illustrated in Figure 3.9.

3.1.3 Container Detection

Figure 3.7: Aliasing typically found near
hard edges to increase the apparent resolu-
tion or contrast. The shade of gray is not
the same on both sides of the edge.

Figure 3.8: Template image used for signal
container detection. The red area illustrates
pixels ignored during template matching.

In the allocations editor, the same approach is applied to detect and process signal containers
on top of edges. To enhance diagram readability, it is assumed that no 90° turns are concealed
behind the containers, only one edge passes behind each container and that edges pass through
them in a straight line, avoiding ambiguities that could confuse both computer vision algorithms
and human users. The primary distinction from intersection detection lies in the number of line
segments: at a signal container, only two line segments meet, rather than four.
The method detects all signal containers in the screenshot using template matching. To ignore
any pixels in the center of the container template, a mask (illustrated in red in Figure 3.8)
is used. This allows signal arrow vertices, indicating signals traveling through the underlying
connection, to overlap with the container vertices, without causing any interference with the
detection process. The detected containers are then processed in the same way as intersections,
connecting the two line segments adjacent to the container.

Figure 3.9: Intersection before and after connecting the line segments.
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3.1 Edge Detection

3.1.4 Line Segment Grouping and Sorting

Converting the line segments into polylines at this stage would produce unusable data, as the
segments are not grouped and not sorted in the sequential order of the edge’s flow. To generate
proper polylines, the line segments must first be grouped into multiple lists of connected chains
which then have to be sorted into the correct order. For instance, if the first line segment in the
list is an intermediate segment within an edge, the polyline function may mistakenly attempt
to connect its endpoints directly to the next point in the list, without considering whether it
belongs to the same continuous chain, resulting in incorrect edge detections.
The implemented method begins by selecting the first line segment, adding it as a starting point
to the first chain group and to a list of used segments and setting the chain_growing flag to true.
It then iterates through all remaining segments, checking whether each segment has already
been used and whether any of its points lie within 7 pixels of the points of the current segment.
If a match is found, the segment is added to the used_segments list and the current chain group.
If no segment is found within the 7-pixel threshold, the chain_growing flag is set to false, and
the completed chain group is added to the list of chains (see Code Listing 3.1). A threshold
of 7 pixels was selected as it reliably produces connected polylines while ensuring that closely
positioned lines, such as those at ports, remain distinct and separate. This process continues
until all line segments have been assigned to a group, illustrated with colors in Figure 3.10.

1 for segment1 in line_segments :
2 if segment1 in used_segments :
3 continue
4 chain = [ segment1 ]
5 used_segments . append ( segment1 )
6 chain_growing = True
7

8 while chain_growing :
9 chain_growing = False

10 for segment2 in line_segments :
11 if segment2 in used_segments :
12 continue
13 for chain_segment in chain:
14 if (
15 distance ( chain_segment .p1 , segment2 .p1) <= max_distance or
16 distance ( chain_segment .p1 , segment2 .p2) <= max_distance or
17 distance ( chain_segment .p2 , segment2 .p1) <= max_distance or
18 distance ( chain_segment .p2 , segment2 .p2) <= max_distance
19 ):
20 chain. append ( segment2 )
21 used_segments . append ( segment2 )
22 chain_growing = True
23 break
24 if chain_growing :
25 break
26 chains . append (chain)

Code Listing 3.1: Grouping line segments into line segment chains.

Generating the polylines now would yield better results, but still create unusable data, because
the line segments within each chain and the two points within each line segment are not sorted.
The first point in a list of line segments in a chain could for example be a point in the middle of
the chain, resulting in OpenCV’s Polyline function to connect the following points in the wrong
order.
The sorting algorithm for solving this problem consists of two steps: the first sorts the line
segments from the beginning of the chain to the end, the second sorts the end- and startpoint of
each line segment individually, so that they too appear in sequential order of ’flow’ in the chain.
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3 Advanced Block Diagram Recognition

Figure 3.10: Left: detected vertical and horizontal line segments. Colors distinguishing horizontal
and vertical lines.
Right: detected line segments grouped into individually colored line segment chains.

Figure 3.11: Intermediate points (left) have other points in close proximity, while endpoints
(right) do not.

To distinguish between intermediate points and endpoints, the function relies on the method by
which the points were initially identified: when two line segments intersect to form a 90° turn,
each segment consists of a start- and an endpoint. As a result, intermediate points in a chain,
where line segments meet, always have two points in close proximity, whereas endpoints only
have a single point, since only one line segment terminates at each endpoint (see Figure 3.11).
The method leverages this discrepancy by identifying endpoints through an iterative process: It
examines each point and checks for the presence of other points within a seven-pixel radius. If
no other points are found within this radius, the point is classified as an endpoint of a chain
(see Code Listing 3.2).

1 chain_endpoints = []
2 for chain in chains :
3 endpoints = []
4 for segment in chain:
5 for point in segment :
6 if all( distance (point , other_point ) > max_distance for

other_segment in chain for other_point in other_segment if point !=
other_point ):

7 endpoints . append (point)
8 chain_endpoints . append ( endpoints )

Code Listing 3.2: Differentiating between segment endpoints and intermediate points.

Using the identified endpoints to initialize the sorted_chain list allows the program to organize
the chains systematically.
The process begins by selecting a segment that includes one of the start points as the initial
segment of the chain. The endpoint of this segment that is not a chain endpoint is designated
as the first last_point in the sorted_chain list. To determine the next segment in the chain,
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a lambda function iterates through each remaining segment in the current chain, calculating
the distance between the last_point and each point of each segment in the chain. The segment
containing the point with the smallest distance to the last_point is selected as next_segment
and removed from the list of remaining_segments. Within this segment, the point closest to the
last_point is appended first to the sorted_chain, followed by the second point of the segment.
This process repeats until no segments remain in the remaining_segments list. The entire
process is repeated for each chain until all points in all chains are ordered according to the
edge’s flow (see Code Listing 3.3).

1 sorted_chains = []
2 for index , chain in enumerate ( chains ):
3 if not chain_endpoints [index ]:
4 sorted_chains . append (chain)
5 continue
6 start_point = chain_endpoints [index ][0]
7 sorted_chain = [ start_point ]
8 remaining_segments = chain [:]
9

10 while remaining_segments :
11 last_point = sorted_chain [-1]
12 next_segment = min(
13 remaining_segments ,
14 key= lambda seg: min( distance (last_point , seg.p1), distance (

last_point , seg.p2))
15 )
16 remaining_segments . remove ( next_segment )
17 if distance (last_point , next_segment .p1) < distance (last_point ,

next_segment .p2):
18 if next_segment .p1 != last_point :
19 sorted_chain . append ( next_segment .p1)
20 sorted_chain . append ( next_segment .p2)
21 else:
22 if next_segment .p2 != last_point :
23 sorted_chain . append ( next_segment .p2)
24 sorted_chain . append ( next_segment .p1)
25 sorted_chains . append ( sorted_chain )

Code Listing 3.3: Sorting each point in each chain according to the edges flow

Figure 3.12: Numbered polylines found in the functions editor. Connecting the points in the
correct order results in the detected edges.

As seen in Figure 3.12, the method successfully generates polylines from the initial screenshot.
The order in which the polylines are initially detected depends on the order of the line segments
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3 Advanced Block Diagram Recognition

and is not relevant for the final result.
Polylines, which represent connected line segments as ordered lists of points, are a fundamental
component in reconstructing edges within the diagram. To generate these polylines from the
sorted chains, the method iterates through the sorted_chains list, sequentially appending each
point to construct the polylines. The preprocessing and sorting of the data ensures that the
chains are already structured correctly, making the generation of polylines straightforward and
efficient. Once the polyline is constructed, it is converted into the format required by OpenCV
for further processing.

3.2 Vertex Detection

Vertices represent distinct visual elements within XGEE, such as functions, devices, containers
or IO ports. Identifying these vertices is critical for interpreting the structural arrangement
of the diagrams. This section introduces a template-matching approach to address problems
including overlapping vertices and varying sizes, ensuring a more reliable vertex detection in all
considered diagram types within XGEE.

A major problem in template matching is the diversity of vertices within XGEE’s editor models.
For example, the functions editor contains only functions, inputs and outputs, while the hardware
editor contains devices and IO ports and the allocations editor contains devices, signal containers,
signal arrows and subtasks which overlap with devices and contain their own set of sub-sub-
vertices. Additionally, some vertices are scalable, while others are not. Scalable vertices require
extra processing to ensure accurate detection. However, applying this processing universally to
all vertices would result in unpredictable and incorrect detections.

To address these challenges, the model is queried for a list of unique vertices. This list is
analyzed to identify any vertices with the isSubVertexBody-flag set, which indicates they are
subvertices such as subtasks, that overlap with other vertices. These subvertices are prioritized
and placed at the beginning of the list of vertices. This way, the vertex detection method can
progressively simplify the image by erasing detected subvertices after the first iteration of the
vertex detection function, allowing the underlying vertices to be detected without obstruction.
Other relevant flags are:

• isScalable which indicates whether the vertex can be scaled

• sizeX and sizeY which specify the size of the vertex

• filepath which specifies the path to the template image

• parent_filepath which specifies the path to the parent vertex in case it is a subvertex

The method iterates through the list of unique vertices in the current editor model, prioritizing
subvertices identified in the previous step. These subvertices are removed from the image by
setting all pixels within the bounding box of the subvertex to the fill color of the parent vertex as
shown in Figure 3.13. This process effectively removes the subvertices from the image, enabling
the subsequent vertex detection steps to accurately identify the remaining vertices.
After processing the subvertices, a new image object is created using the modified image. The

method then iterates through the list of remaining vertices, loading the template image of each
vertex using the filepath attribute. Depending on the isScalable flag, either the ScalableVer-
texDetector or one of the UnscalableVertexDetectors is initiated and the corresponding vertex
detection is applied.
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3.2 Vertex Detection

Figure 3.13: Original image from allocations editor containing subvertices (left) and modified
image with subvertices removed (right).

In case of unscalable vertices, OpenCV’s matchTemplate and normalize functions are applied.
The resulting data is thresholded to identify the positions of all found vertices. To define the
vertex boundaries, the sizeX and sizeY attributes are used, allowing bounding boxes of the
correct size to be drawn with the detected match serving as the upper-left corner. This approach
is effective for detecting vertices like IO ports and subtasks.
In case of scalable vertices, this approach does not work because the size of the vertex is variable,
which reduces the certainty of found matches drastically and eliminates constant sizeX and
sizeY values as a reliable method for defining bounding boxes.

Scalable vertices within XGEE are function- and device containers that can be resized to improve
the readability of visualizations. However, the initial scalable vertex detection algorithm often
produced inaccurate results when applied to large function- and device containers. Specifically,
it tended to produce higher similarity scores at the corners of the container, as the black border
surrounding the vertex at these locations more closely resembled the black border in the template
image. In contrast, the absence of a black border in the center of the container led to lower
similarity scores. In extreme cases, this resulted in the center of the vertex not being detected at
all, with the algorithm instead falsely identifying four smaller vertices at the container’s corners.
The same issue occurred with large devices.
To detect these vertices regardless of their dimensions, multiple templates of the same size for
different parts of the large vertex as illustrated in Figure 3.14 are required. They are generated
from the (leftmost) original template image by cropping its edges and corners in different ways.
Template matching is performed iteratively with each template, comparing the results after

Figure 3.14: Templates for scalable vertex detection generated from the original (leftmost)
template image, black edges are exagerated for clarity.

each iteration. The highest similarity score for each pixel is retained and combined into the
resulting data, which is then thresholded to extract all potential matches.
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Typically, numerous matches are identified during this process. To eliminate false positives
and process the matches to determine the differently sized bounding boxes of the vertices, the
algorithm described by Andreas Waldvogel and Björn Annighöfer in [2] is applied.
The original image is thresholded to distinguish foreground from background pixels, as illustrated
in Figure 3.15. This foreground information is then utilized to filter the detected matches,
retaining only those located within the foreground area. This process effectively removes false
positives which often occur because the black pixels along the edges and borders of function or
device containers closely resemble those in the black borders in the template images.

Figure 3.15: The allocations editor screenshot (left) is thresholded to extract the foreground
pixels (right).

For each remaining detected match, the sizeX and sizeY attributes are used to create a filled
bounding box around the detected position. Since multiple matches are often found at various
locations within a single large vertex, the overlapping bounding boxes collectively form a
larger structure. This structure is then simplified into a single bounding box using OpenCV’s
findContours function. This approach successfully detects all scalable vertices within XGEE

Figure 3.16: Image from allocations editor containing a large, partially detected device using
one template(left) and containing a large, fully detected device using multiple templates(right).

regardless of their dimensions. Using both scalable and non-scalable vertex detection methods
ensures that all vertices are accurately identified.
Figure 3.16 illustrates the original method’s difficulties when dealing with large vertices with
overlapping subvertices. On the left, in the center portion of the device, no matches are found

18



3.3 Text Recognition

due to the absence of black borders and interference with the remaining text of the subtasks.
On the right, many templates are used to detect the entire device, resulting in a more accurate
detection.
The method is capable of detecting all vertices in the 20 unique test cases within this paper,
including subvertices and scalable vertices.

3.3 Text Recognition

The original text detection in XGEE utilized Pytesseract [15], an open-source Optical Character
Recognition (OCR) engine developed and sponsored by Google in 2006. Pytesseract required
separate installation from other packages and could only detect text in images that had been
preprocessed. Additionally, the output data required extensive postprocessing to become usable.
While Pytesseract demonstrated high accuracy and speed, it struggled to reliably detect small
text or text with low contrast to the background. Its optimization for structured text formats,
such as those found in books, further hindered its performance in XGEE, where text can appear
in varying orientations, sizes, and positions. These limitations made reliable text detection
using Pytesseract difficult to achieve.

Figure 3.17: Input image from hardware editor containing rotated text

Figure 3.18: Output image from hardware editor containing text bounding boxes

After evaluating various OCR engines, including EasyOCR [16], Doctr [17], and Keras-OCR
[18], EasyOCR proved to be the most suitable alternative.
EasyOCR is a deep-learning-based OCR engine that reliably detects text in images, even under
challenging conditions such as low contrast or resolution. Although it operates more slowly
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on modern CPUs compared to some alternatives, it performs significantly faster on GPUs.
Additionally, its ability to detect text in multiple languages adds potential value for future
applications. Integration of EasyOCR into the XGEE editor for the user is straightforward, as
it can be installed directly via pip install easyOCR through the requirements.txt file without
requiring additional dependencies or downloads. Unlike Pytesseract, EasyOCR only necessitates
minimal image preprocessing, and it structures found characters into words and sentences
automatically based on proximity, eliminating the need for extensive postprocessing. These
advantages make EasyOCR the optimal choice for the updated text detection pipeline within
XGEE.

First, a reader object is created and the language of the text is specified. The readtext function
of the reader object is then called with the image as an argument. The image has to be padded
to have a square shape, so it can be easily rotated. To ensure a more reliable detection, the
image is slightly blurred and upscaled to counter any aliasing and small characters. The text
detection function then returns a list containing the detected text, its bounding box, and a
certainty factor. Parameters can be specified when calling this function to adjust the expected
text properties, enhancing the reliability of the detection. For example in earlier versions,
EasyOCR struggled to detect single numbers, likely because its language model has been
trained on data not containing any single characters, but with these parameter adjustments,
the occurance of this issue has been reduced.
The detection process is repeated for the rotated version of the image to detect rotated text
labels, present in the hardware layer, as well. The positions of the bounding boxes of the found
rotated text are then rotated around the center of the image to reallign them with the found
text of the original image. The found bounding boxes and text are illustrated in Figure 3.17
and 3.18. Reading an image which contains rotated text usually results in many falsely read
characters, because for example ’o’ and ’l’ can be interpreted regardless of orientation. To
filter out the falsely read characters, the algorithm first combines the found results of both
OCR-searches and then removes every word shorter than three letters.

Figure 3.19: Debugging image of bounding boxes and token names found during the tokenization
of the allocations layer, demonstrating the capability of the tokenization pipeline.

Because easyOCR automatically groups detected characters into words and sentences, this is a
simple and effective method to filter out falsely read characters. Using this approach also allows
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the same algorithm to be used for all models, regardless of the XGEE editor they were created
in, simplifying the integration into the XGEE codebase. In conclusion, these methods enhance
the tokenization process compared to the previous implementation. As seen in Figure 3.19,
the combined methods are able to correctly identify all token types in the allocations editor,
utilizing all previously mentioned methods.
The new edge detection identifies edges regardless of length and orientation. Intersections and
signal containers are correctly identified and processed, ensuring that all detected edges are
continuous. The vertex detection method is capable of detecting scalable vertices of varying
sizes, unscalable vertices, IO ports, and subtasks, even when they overlap. The text detection
method is capable of detecting text in varying orientations and positions. The combined methods
provide a robust and reliable tokenization pipeline for XGEE, capable of accurately identifying
all relevant tokens in the editor models.1

1The described methods can be found individually at https://github.com/franzbanz/computervision
and implemented into XGEE at https://gitlab.com/xgee/xgee-example-app.
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4 Integration

This chapter provides an in-depth explanation of how the described methods were implemented
into the larger XGEE codebase.

4.1 System Overview and Workflow

XGEE is a web-based graphical model editor that utilizes an editor model to define editors for
ecore models in a model-driven approach, enabling visualization and interaction. The editor
model supports the model-driven definition of editors for ecore models, incorporating both
visualization and interaction [2].

XGEE’s visualization verification is implemented as a modification to the main editor, mostly
within the detector.py and diagram_tokenization_orchestrator.py files. For the verification
process to function correctly, a screenshot of the entire screen is preprocessed to isolate the
relevant portions of XGEE’s editor window by removing elements like the browser UI and
background grid. During the tokenization step, the positions, dimensions and contents of edges,
vertices, and text are detected and stored. This data is subsequently used in the syntactical
analysis to identify inconsistencies in parent-child relationships between tokens. (Syntax in
this context means the positioning rules of vertices, edges and text labels defined in the editor
model.)
A new model is then instantiated based on the detected tokens and the visualization model.
This model is compared to the original and any discrepancies are highlighted through both
graphical and textual user interfaces.
Edge, vertex, and text detections occur during the tokenization phase of the verification pipeline.
In the original integration, each detection algorithm was implemented as a class within the
detector.py file, while their execution was managed by the diagram_tokenization_orchestrator.py
file, which determined the order and process of the tokenization. This structure is retained and
extended in the new implementation.

4.2 Edge Detection Integration

The integration of the new edge detection algorithm into XGEE is simplified by its use of the
already existing interface for inputs and outputs. This approach ensures that the system remains
modular and scalable.
To implement the new functionality, the algorithm is divided into sections, each expressed as
an individual function in the code. These functions are appended to the edge detection class,
maintaining modularity and readability. By ensuring the edge detection operates with the
same input (screenshots) and provides the same output (OpenCV polylines) as the original
method, the new implementation can be integrated without requiring large changes to the
existing codebase.
The diagram_tokenization_orchestrator queries information such as the stroke width and color
from the editor model, which could be used in the future to further generalize the edge detection.
It also instantiates an object of the edge detection class, passing the workspace path as an
argument to extract data like the intersection template. The polylines are stored using a
dedicated data storage function, ensuring subsequent steps proceed smoothly without requiering
additional integration effort.
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4.3 Vertex Detection Integration

The integration of a new vertex detection algorithm into XGEE’s codebase required addressing
problems such as order-dependent method execution and enabling functions to dynamically
share and modify input data at runtime.
Previously, a list of vertices for the current editor, generated by the dia-
gram_tokenization_orchestrator, drove the vertex detection process. The method iterated
through this list, performing detection cycles for each vertex type, distinguishing between
scalable and non-scalable vertices. However, this static approach proved inadequate in the
allocations editor due to overlapping vertices, where detecting the top-level vertex first becomes
critical. Furthermore, it was not possible for functions to pass intermediate results, such
as detected subtasks, to subsequent functions. This was because the input (a preprocessed
screenshot) was initialized at the start of the verification process using the ImageWrapper class
and remained static throughout.
To solve these issues, the new implementation preprocesses the list of editor vertices to ensure
vertex detection in the correct hierarchical order and introduces a way for input images to be
updated dynamically during runtime.

In the new implementation, the diagram_tokenization_orchestrator queries vertex attributes
such as the filepath, shape, positioning within other vertices and the parent’s filepath from the
editor model domain. The vertex’s position within the list of editor vertices is determined by
the presence of the isPositioningBody attribute: vertices with this attribute are classified as
subvertices, while those without it are considered top-level vertices. Subvertices need to be
detected first, as their overlap with parent vertices would otherwise interfere with the reliable
detection of those parent vertices.
Using these attributes, the list of editor vertices is first sorted, prioritizing subtasks. The
diagram_tokenization_orchestrator then iterates through the sorted list, performing vertex
detection for each vertex type. To enable the vertex detection function to alter the input of all
subsequent iterations of the function, the creation of the ImageWrapper object is shifted inside
the vertex detection loop. This enables a new ImageWrapper Object to be instantiated for every
iteration, using the updated image.
For subvertices, a new function overlays the detected bounding boxes in the target image with
the parent vertex’s main color (e.g. the gray of device vertices is used to erase the top-level
subtasks). The altered image is then used to instantiate the ImageWrapper, ensuring subsequent
stages of vertex detection and verification operate on the updated input. This iterative approach
enables precise detection of both subvertices and their parent vertices while simplifying the
image progressively. After all subvertices are processed, almost all remaining vertices can be
detected using the methods described in section 3.2, as the subvertices no longer interfere with
the detection process.
An alternative approach for resolving overlapping vertices described in section 3.1 has been
implemented for signal container detection in the allocations editor, facilitating the need to
process signal containers seperately using a distinct detection class and seperating them from
the other vertices using the filepath attribute.
Because container vertices are non-scalable, the newly created ContainerDetector class inherits
from the existing PortDetector class (see Figure 4.1). This inheritance allows the ContainerDe-
tector to reutilize the majority of the functionality provided by PortDetector, while overriding
the detect_vertices function to implement a specialized detection process tailored to container
vertices. Depending on the vertex type, an object of either ScalableVertexDetector, Contain-
erDetector or PortDetector is instantiated and used to detect the vertices.
The detected vertices are stored using a dedicated data storage function, ensuring subsequent
steps proceed smoothly without requiring additional integration effort.
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4.4 Text Recognition Integration

Figure 4.1: Inheritance diagram of the vertex detection classes created using PlantUML [19]. The
ContainerDetector class inherits from the PortDetector class, allowing it to reuse the majority
of the functionality provided by PortDetector.

4.4 Text Recognition Integration

The integration of EasyOCR into the XGEE codebase is achieved by utilizing the EasyOCR API
within diagram_tokenization_orchestrator.py. The detect_text function is updated to employ
EasyOCR for text extraction from preprocessed images. The extracted text is then stored
using the existing dedicated data storage function, ensuring compatibility with subsequent
processing steps. Unlike PyTesseract, EasyOCR includes inconsistent padding around detected
text regions, resulting in less precise positional data. This discrepancy caused inconsistencies in
positional accuracy and introduced errors in downstream model comparison methods. To ensure
compatibility with the already existing interface, the dimensions of the bounding boxes were
adjusted to more closely match those of PyTesseract. A positioning margin was implemented
as well to reduce the need for bounding boxes to be positioned pixel-perfectly, reducing the
amount of interfering error indications.

4.5 Testing and Validation of the Integration

To test the methods, the XGEE editor is used to create models with a known structure,
incorporating different test cases in different editor layers. The model is processed by the
verification pipeline. If necessary, text, vertex, or edge detections can be turned off to accelerate
testing and reduce the workload when evaluating newly implemented methods. The results are
compared to the expected output, and any discrepancies are analyzed to identify the cause.
To further streamline the testing process, all previously mentioned methods log intermediate
images and results using a dedicated Python logging package. This simplifies the process of
identifying and resolving new issues.

To classify the performance of all newly implemented methods, 20 unique testcases in each
editor model were processed and analyzed to demonstrate the functionality and limitations of
the new additions. These evaluations are presented in chapter 5.
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5 Results

To evaluate the newly implemented functionality, a series of test cases are used. These test cases
are created by directly manipulating the model’s vector graphics using the Firefox Developer
Tools. Individual vertices can be manipulated directly within the browser by decoding a base64 -
encoded string that represents the graphic into a readable format that describes the properties
of the corresponding .svg file. Adjustments to attributes such as fill followed by re-encoding the
data into base64 allows changing the appearance of the visualization. Similarly, vertex positions
can be modified, or vertices can be removed entirely, by adjusting the relevant values within the
developer tools.
All test cases are derived from the models shown in Figure 5.1 and are simulated with minimal
deviations to ensure accuracy.

5.1 Test Cases

Because the Error indications differ based on the step of the pipeline the error was found in,
the testcases are divided into three categories:

• Testcases where the error can be indicated textually as well as visually highlighted inside
the editor (see Table 5.1).

• Testcases where the error can only be indicated via a textual error indication (see Table 5.2).

• Testcases without any simulated errors to illustrate the pipeline’s capability to deal with
complex models (see Table 5.3).

Table 5.1 shows the results of testcases where the error can be identified and visually highlighted
inside the XGEE Editor, as well as indicated via the textual log. The first column in Table 5.1
provides a brief description of the simulated error and the used error model. The second column
provides an image of the relevant portion of the screenshot with the error highlighted. If the
error type is found to be Untokenized Pixels, the highlighting color is purple, otherwise, the
color is red. The third column provides the textual error indication alongside the step of the
verification pipeline, where the error was detected. In some cases, for example when a device
with multiple IOs is removed or too small to be detected, many error indications of the same
type are generated. In this case, only a few of the error indications are shown in the table and
further errors of the same type are indicated using “ ... ”.

Figure 5.1: Unaltered models as a basis for testcase generation.
Left: Functions Layer, Right: Hardware Layer
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The testcases enumerated in Table 5.2 only result in textual error indications. This is because
the tested errors can not be detected during the tokenization or syntax steps of the verification
pipeline, meaning that visually, the used tokens and their syntax are correct. The errors are
only discovered during the comparison or instantiation steps, resulting in only a textual error
indication. The first column of the table provides a zoomed-in view of a model containing the
error. The second column provides a brief description of the testcase and the indicated textual
errors.

Table 5.3 contains testcases without any simulated errors to illustrate the pipelines capability
to deal with complex models including diverse vertices and intersecting connections. The first
colummn provides a brief description, the second and third column provide the visualization
within the functions layer and within the hardware layer of the XGEE editor.
While the tokenization is functional for three of XGEEs model layers, the allocations layer has
not yet been implemented fully into the verification pipeline, meaning that there are currently
no meaningful error indications when trying to verify a model in the allocations layer. Hence,
the testcases are only shown for the functions and hardware layers.
A seperate testcase showcasing the capability of the tokenization pipeline of allocation models
can be seen in Figure 3.19. All found edges, bounding boxes and their respective token names
are overlayed in green on the screenshot of the used model.
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5.1 Test Cases

Table 5.1: Results for test cases with textual and visual error indication.

Test Case Excerpt Visual
Error Indication Textual Error Indication

Functions Layer -
Task too Small

Tokenization: untokenized pixels.
Syntax: [’text’, 3] is missing a parent element.
Syntax: [’output.svg’, 5] is missing a parent
element.
Syntax: [’output.svg’, 6] is missing a parent
element.
Instantiation: output.svg[5] is not
instantiated, association cannot connect.
Comparison: Task Sensor Close Button
missing in recognized model.
Comparison: Signal Door System Logic: B →
Actor Locked: A missing in recognized model.
...

Hardware Layer -
Device too Small

Tokenization: untokenized pixels.
Syntax: [’text’, 11] is missing a parent element.
Syntax: [’io.svg’, 2] is missing a parent
element.
Syntax: [’io.svg’, 3] is missing a parent
element.

Functions Layer -
Task Wrong Color

Tokenization: untokenized pixels.
Syntax: [’text’, 6] is missing a parent element.
Syntax: [’input.svg’, 5] is missing a parent
element.
Instantiation: input.svg[5] not instantiated,
association cannot connect.
Comparison: Signal Door System Logic: B →
Actor Locked: A missing in recognized model.
Comparison: Signal Door System Logic: E →
System Logic Logging: 5 missing in recognized
model.
...

Hardware Layer
- Device Wrong
Color

Tokenization: untokenized pixels.
Syntax: [’text’, 10] is missing a parent element.
Syntax: [’io.svg’, 0] is missing a parent
element.
Syntax: [’io.svg’, 1] is missing a parent
element.
...

Functions Layer -
Free Floating Input

Syntax: [’input.svg’, 0] is missing a parent
element.
Syntax: [’output.svg’, 1] is missing a parent
element.

Continued on next page
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Table 5.1 continued from previous page

Test Case Excerpt Visual
Error Indication Textual Error Indication

Hardware Layer -
Free Floating IO

Syntax: [’text’, 19] is missing a parent element.
Syntax: [’io.svg’, 0] is missing a parent
element.

Functions Layer -
Free Floating Star

Tokenization: untokenized pixels.

Hardware Layer -
Free Floating Star

Tokenization: untokenized pixels.

Functions Layer -
Input Instead of
Output

Syntax: [’text’, 4] is missing a parent element.
Syntax: [’text’, 4] is missing a parent element.
Syntax: [’input.svg’, 4] is missing a parent
element.
Syntax: [’output.svg’, 3] is missing a parent
element.
Instantiation: Failed to instantiate
association. Endpoint input.svg.
Instantiation: Failed to instantiate
association. Endpoint output.svg.
Comparison: Signal Door System Logic: B →
Actor Locked: 1 missing.
...

Functions Layer -
Signal Wrong Color

Tokenization: untokenized pixels.
Syntax: [’text’, 17] is missing a parent element.
Comparison: Number of Signals in the
original model (6) does not match (5).
Comparison: Signal Door System Logic: E →
System Logic Logging: 5 missing

Hardware Layer -
Signal Wrong Color

Tokenization: untokenized pixels.

Continued on next page
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Table 5.1 continued from previous page

Test Case Excerpt Visual
Error Indication Textual Error Indication

Functions Layer -
Text too Far

Syntax: [’text’, 4] is missing a parent element.
Comparison: Task "Sensor Close Button"
missing in recognized model.
Comparison: Signal Sensor Close Button: A
→ Door System

Hardware Layer -
Text too Near

Syntax:[’text’, 9] is missing a parent element.

Table 5.2: Results for test cases with textual error indication.

Test Case Excerpt Modified
Screenshot Textual Error Indication

New Task Hiding
Other New Task

Comparison: Task Hidden missing

Task Out of Win-
dow

Comparison: Task Far Away missing

Task Deleted in Ed-
itor, but Still in
Model

Comparison: Task New Task Already Deleted
Missing

Task Created, but
Not Yet in Model

Comparison: Task Newly Created Not Yet in
Model Missing in Original Model

Signal Not Con-
nected to Input

Comparison: Signal Door System Logic:C →
Actor Unlocked:4 Missing

Signal Connected
to Wrong Port

Comparison: Signal Door System Logic: B →
Actor Locked: A Missing
Comparison: Signal Door System Logic: E →
System Logic Logging: 5 Missing

Overlapping Inter-
sections

Comparison: Sensor Open Button:D → Door
System Logic:3 Missing
Comparison: Task Sensor Open Button Missing

Continued on next page
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Table 5.2 continued from previous page

Test Case Excerpt Modified
Screenshot Textual Error Indication

Changed Task
Name, but Not Yet
in Model

Comparison: Sensor Open Button:D → Door
System Logic:3 Missing
Comparison: Task Sensor Open Button Missing

Encoding Error in
Task Name

Comparison: Task Actor Locked Missing
Comparison: Signal Door System Logic:B →
Actor Locked:1 Missing

Table 5.3: Functional Test Cases Demonstrating Correct System Behavior

Test case description functions layer visualization hardware layer visualization

Processing of vertices with vary-
ing sizes and aspect ratios

Recognition of complex signal in-
tersections in close proximity

Function / device has the wrong
color - but is still detected by the
template matching method.
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6 Discussion

This chapter highlights the implemented methods’ capability to handle a variety of testcases, as
well as current limitations and challenges of the implemented methods, focusing on their impact
on error detection, visualization, and overall system efficiency.

6.1 Discussion of Test Cases

As seen in chapter 5, all 20 unique testcases are correctly identified and indicated to the user
and, as seen in Table 5.3, no error smells are reported if none are simulated. (The concept of
error smells describes patterns or indicators that suggest the presence of errors in the system.)
In the free floating star test case, the star is detected and highlighted as untokenized during the
tokenization step at the beginning of the pipeline. In the input instead of output and free floating
input / IO testcases, all vertices are known, but they are not correctly positioned, resulting in an
error smell indication during the syntax step of the pipeline. Similar indications are generated
in the text too far and text too near test cases, because they too are correctly identified during
tokenization but have a slightly shifted position, resulting in syntax error indications.

In device wrong color, task wrong color and signal wrong color, the color of one of the vertices
or edges is changed such, that it is no longer being detected in the tokenization step. This
is because OpenCV’s templatematching method does not consider color when comparing the
template image with the underlying pixels. Similarly, the match2D method only considers
grayscale pixels when detecting edges. When the color changes, the grayscale values of the
pixels change as well. Most of the time, this results in untokenized pixels, as well as a number
of additional error smells, because for example, the associated IO ports of the changed device
are now seemingly floating in space, resulting in wrong syntax. The same problem arises in the
simulated testcases task / device too small.

Further problems arise when instantiating and comparing the new model without the changed
device. These additional error smells are reported, making it harder for the user to identify the
original problem cause.
Furthermore, as illustrated in Table 5.3 row 3, an unexpectedly changed color is only indicated
to the user, if the intensity of the original and altered color is significantly different. This is
because OpenCV’s matchtemplate function compares the pixels intensities, effectively ignoring
colors. This could be improved by running the template matching algorithm seperately for
each color channel and then comparing the results or by incorporating a different method more
suitable for differentiating color hues.

6.2 Limitations of the Current Implementation

The current implementation is, in large parts, model driven, meaning it can recognize the current
editor model and query it for information, such as a list of the used token types and the filepath
of their respective .svg files. This information can then be used to dynamically change the
verification pipeline, for example by choosing the correct templates for the current visualization.
When the visualized model, which is the one seen by the user, changes unexpectedly, the editor
model still provides the necessary information to run the verification pipeline.
However, a current limitation is the amount of information that is queried and utilized. For
instance, the current implementation does not query the current model layer, making it difficult
to differentiate between function-, hardware-, and allocation layers. This can lead to less
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efficient tokenization. For example, during text recognition, the image is searched for rotated
text, regardless of whether the current model contains any.
Another limitation lies in the template matching method. As stated in chapter 3, the current
implementation applies each template to the image, which works well if the used templates are
stored within the model, enabling the system to query them and dynamically choose the correct
templates for each model layer. However, for edge and intersection detection, no such convenient
template files are stored. Instead, the templates are generated with a fixed size, making it
harder to adapt the system to changes in edge width, color, or intersection visualizations.
Another limitation stems from the visualization and the edge detection pipeline’s difficulty
in identifying the edges connecting subtasks within the allocations editor (see Figure 6.1).
This is because these edges are too thin and lack sufficient contrast for accurate detection.
Implementing a more robust algorithm or designing a visualization that is easier to detect for
computer vision algorithms could enhance the detection process, potentially allowing it to be
integrated into the edge detection pipeline.

Figure 6.1: Example of the thin edges in the allocations editor, which are hard to detect using
the current edge detection method.

Another limiting factor is the lack of error handling mechanisms. If an error occurs during
the verification, it can disrupt or stop the entire workflow. Furthermore, a single error smell
can result in many error indications, as discussed in chapter 6, hampering the user’s ability to
quickly find the root cause of the error indications.

All of these limitations could be addressed by enhancing the current implementation with
additional features, such as querying the model for more information, dynamically generating
templates, or implementing more robust error handling mechanisms.
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7 Outlook

This chapter explores potential improvements and future directions for the methods and tools
introduced in this thesis, with a focus on insights gained from the analysis of test cases. While
the proposed edge, vertex, and text detection algorithms perform reliably in most scenarios,
certain limitations become evident when applied to complex or ambiguous test cases.

7.1 Edge Detection Further Improvements

Figure 7.1: Example of different intersection and edge types, which would require different
handling in the edge detection pipeline.

The method introduced in this thesis successfully detects and processes nearly all edges within
XGEE. In contrast to the previous algorithm, it can identify edges in any orientation, regardless
of their start or endpoint or order of their line segments. Furthermore, it is capable of processing
and interpreting intersections and signal containers, making it well-suited for handling large,
complex models. The method performs reliably across all three editor models, provided the
models are formatted correctly (the zoom level has to be set to 100% across the entire operating
system for the edge detection to work correctly). In cases where multiple edges overlap or many
intersections are within a few pixels of each other, an error smell is reported, as the method, as
well as human operators, can not reliably interpret the image. This enforces an unambiguous
model layout, which is achieved by either an automatic arrangement algorithm or the user.

The current intersection detection relies on a very specific visualization, where edges run in
straight lines and intersecting edges simply cross. There are, however, many possible ways to
visualize edges and intersections (see Figure 7.1). This poses a limitation, as the current method
cannot adapt if the edge and intersection visualization changes, for instance, to better display
the intersection of multiple edges. A potential solution to this problem could involve extracting
the intersection graphic from the screenshot by predicting the intersection’s position based on
the detected edges. This approach would enable the method to adapt to different intersection
visualizations automatically, as long as the edges remain detectable. Another potential solution
would be to include information about the possible intersection types within the editor model,
enabling the method to generate a template image.

A notable problem arises when vertices with surrounding black edges, such as devices or functions,
are scaled sufficiently, making their edges resemble signal-carrying edges (see Table 5.3 first
testcase, where the black borders around the larger vertices appear wider than those around
smaller vertices). This complicates their differentiation. In these cases, a possible solution would
be to let the vertex detection run first and exclude the found areas when applying the edge
detection. Alternatively, the presence of colored pixels around the edges could be checked more
thoroughly, as the background around edges is typically white, unlike the areas inside device or
function vertices. This way, any obstructions caused by the vertices can be avoided. Another
possible solution would be to implement an enhanced scaling method into XGEE, eliminating
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the problem of vertex borders scaling together with vertex bodies, thus resembeling edges.

Another issue can arise if the edges are configured by the user in an unexpected way. For
instance, two overlapping vertices, such as in Figure 7.2, can not be properly interpreted by
human users, was well as computer vision algorithms. The text labels can not be read, the vertex
borders are not clear and the edges overlap, making it impossible to clearly read the diagram
structure. Future improvements to the XGEE editor, such as a more advanced automatic
arrangement algorithm, could reduce or eliminate the risk of ambiguous user input that would
result in such cases.
In less problematic cases, for example an intersection hidden behind a single vertex, a future
method could search for edges along the sides of detected devices and functions and attempt
to connect them in a meaningful way. However, this approach might fail if multiple edges run
behind a single device or function, which would also make the visualization difficult for a human
user to interpret.

Another issue arises from edges connecting subtasks within the allocations editor. They often
overlap with text, are too thin, and have too little contrast to be detected accurately. In a
future version of XGEE’s visualization, enhancing the readability of subtask edges would enable
a computer vision algorithm to detect them reliably, enabeling useful user feedback and thus
improving the verification tool.

Figure 7.2: Overlapping edges, vertices and labels in the functions editor, which lead to ambiguous
edge, text, and vertex detections.

7.2 Vertex Detection Further Improvements

The proposed method can reliably detect almost all vertices across three of XGEE’s model layers,
regardless of their dimensions or placement. It can effectively distinguish between subvertices
and main vertices by querying the model and applying the appropriate template matching
algorithm based on the properties of each template. Additionally, the current editor model is
queried to identify the set of utilized vertices, which are subsequently detected. This adaptability
enhances both the efficiency and reliability of the method, enabling it to handle changes in the
model.
As described in chapter 3, the current method identifies each token type within the allocation
layer by following a structured detection sequence. First, subtasks are identified and subsequently
erased from the screenshot to prevent interference with the detection of underlying vertices.
Currently, this approach is only used to enable the detection of devices in the allocations layer.
In the future, extending this approach across the entire tokenization pipeline could significantly
enhance vertex detection, ensuring that no vertices are obscured, no vertex is detected multiple
times, and similar vertices, edges, or text are not mistakenly identified as one another.
To implement this improvement, the following steps could be taken:
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• Process all vertices, edges and labels in hierarchical top-down order, starting with subver-
tices and ending with the main vertices, followed by labels and edges.

• Query the parent vertices for their main color and use it to erase all found vertices.

• Dynamically update the input image after each iteration and pass it to the next step in
the tokenization pipeline.

• Correctly handle cases where subvertices, such as IO ports, only partially overlap with
their parent vertices.

This approach would systematically simplify the screenshot with each step of the tokenization
pipeline, effectively only leaving the untokenized pixels on a white background in the end. After
the vertex detection step, the remaining pixels would be passed to the text detection algorithm,
which would then identify any remaining text. Finally, the edge detection algorithm would
process the remaining pixels, detecting any edges without the possibility of interference from
other vertices. This approach would, however, require a way to deal with overlapping text
labels, as they would most likely be partially removed in previous steps, making it impossible to
properly recognize them.

Another possible improvement could be made by enabeling the current method to detect
subvertices of subtasks (very small inputs and outputs, as seen in Figure 6.1), which are
currently excluded from detection due to their small size. These subsubvertices are challenging
to differentiate from noise, character fragments, or edge segments using OpenCV’s built in
methods. Employing image preprocessing techniques or refining or exchanging the template
matching method could improve the detection of these smaller elements and thus enable a more
precise visualization verification.

7.3 Text Detection Further Improvements

Currently, the text recognition system can detect almost any text present within XGEE.
Regardless of the current editor, the screenshot is rotated and analyzed to identify any rotated
text, which contributes to text detection being the most time consuming component of the
visualization verification process.

Optimizing the performance of the text detection algorithm would significantly reduce the
overall processing time. This could be achieved by identifying the specific editor type to allow
the system to selectively search for rotated characters only when they are expected to be present
in the image. Additionally, running the visualization verification on a GPU, parallelizing the
text detection to run simultaneous to the edge- and vertex detection or using a more traditional
text detection algorithm which does not require as much computational power as EasyOCR
would enable the system to process larger models more quickly and efficiently, addressing the
current bottleneck in the pipeline.
Currently, the average runtime of the verification pipeline on an Intel Core Ultra 9 185H CPU
is 54 seconds, with 76% of runtime spent on character recognition.
A new OCR model would also potentially allow for a more precise way to filter out falsely read
characters instead of removing every recognized word shorter than three letters.

Another potential improvement could be made regarding the text recognition’s accuracy. Cur-
rently, as seen in Figure 7.3, text labels are sometimes not correctly detected, resulting in false
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Figure 7.3: Example debugging image with many tasks. The current text recognition is not
accurate enough to reliably detect all text labels in all images, making it necessary for the user
to manually check the verification results in some cases (misidentified labels are marked as in
section 5.1).

positive error indications, that would have to be checked manually by the user. The method is
limited by the quality of the input image and the EasyOCR library. This is because most OCR
engines are trained on books, where text is orderly structured and has a predictable orientation.
In contrast, the text in XGEE models is often spread out unevenly, rotated, distorted, or
partially occluded, making it difficult for the OCR engine to recognize. Additionally, individual
numbers are hard for EasyOCR to detect reliably. In these cases, the user has to check the
verification results manually.
Training a custom OCR model on a dataset of XGEE text images could improve the recognition
accuracy, as the model would be specifically tailored to the unique characteristics of XGEE text.
In future implementations, this could be achieved by automatically generating the training data
alongside the correct text by directly querying the model.
A simpler way to solve the problem of wrongly detected characters could be improved error
handeling, to indicate these types of errors to the user in a simple and clean way. This would
enable the user to quickly identify and correct any false errors, reducing the time spent on
verification.

7.4 Expanding to other Domains or Applications

As described in chapter 5, the current implementation is optimized to work model driven in the
functions- and hardware layer. Developing the implementation further to enable verification
of the allocations layer would be a logical next step, fully enabeling the verification tool to
work with three of XGEE’s editors, dynamically changing with the model. However, because
of the higher complexity of the allocations layer, this would require restructuring the current
implementation to consider the order of detection and the hierarchical structure of the model in
all steps of the verification pipeline.

One of the goals of this thesis was to generalize the used tokenization algorithms to work in
the functions- and hardware editor of XGEE. Expanding upon this idea, a future verification
pipeline could be able to understand a wide range of different editors, potentially enabeling
the verification of editors completely seperated from the verification program. This could be
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achieved by implementing a more general tokenization pipeline, which could be configured to
work with any editor, given the correct templates and cofiguration files.
Enabeling the verification to work with editor models like Simulink and other widely used
modeling tools would make the verification tool more versatile and useful to a wide audience,
potentially resulting in an increase in demand for automatic visualization verification tools.
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